1 Linear Systems of Differential Equations

1.1 Concepts

1. In order to solve a system of linear differential equations, we represent it in the form $\vec{y}=A \vec{y}$. Then we find the eigenvalues of A, say λ_{1}, λ_{2}. If $\lambda_{1} \neq \lambda_{2}$ are real, then we find the eigenvectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ and the general solution is of the form $\vec{y}=c_{1} e^{\lambda_{1} t} \overrightarrow{v_{1}}+c_{2} e^{\lambda-2 t} \overrightarrow{v_{2}}$.

1.2 Example

2. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t)=3 y_{2}(t)
\end{array}\right.
$$

Solution: Let $A=\left(\begin{array}{ll}1 & 4 \\ 0 & 3\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}^{\prime}=A \vec{y}$. The eigenvalues of A are given by $(1-\lambda)(3-\lambda)=0$ or $\lambda=1,3$. For $\lambda=1$, the eigenvector is $\binom{4}{0}$ and for $\lambda=3$, the eigenvector is given by $\binom{4}{2}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{t} \vec{v}_{1}+c_{2} e^{3 t} \vec{v}_{2}=\binom{4 c_{1} e^{t}+4 c_{2} e^{3 t}}{2 c_{2} e^{3 t}}=\binom{c_{1} e^{t}+2 c_{2} e^{3 t}}{c_{2} e^{3 t}} .
$$

1.3 Problems

3. TRUE False If 2 is an eigenvalue for A, then 4 is an eigenvalue for A^{2}.

Solution: Let \vec{v} be the associated eigenvector so that $A \vec{v}=2 \vec{v}$. Then $A^{2} \vec{v}=$ $A(A \vec{v})=A(2 \vec{v})=2^{2} \vec{v}=4$ so A^{2} has an eigenvalue 4 with eigenvector \vec{v}.
4. True FALSE If 2 is an eigenvalue of A and 3 is an eigenvalue of B, then $2 \cdot 3=6$ is an eigenvalue of $A B$.
5. True FALSE If two matrices A, B have the same eigenvalues, then they have the same solutions to $\vec{y}=A \vec{y}$.

Solution: The general solution depends both on the eigenvalues and eigenvectors.
6. Find the solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=5 y_{1}(t)-4 y_{2}(t) \\
y_{2}^{\prime}(t)=4 y_{1}(t)-5 y_{2}(t)
\end{array}\right.
$$

with $\vec{y}(0)=\binom{3}{3}$.

Solution: Let $A=\left(\begin{array}{ll}5 & -4 \\ 4 & -5\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}=A \vec{y}$. The eigenvalues of A are given by $(5-\lambda)(-5-\lambda)+16=\lambda^{2}-9=0$ or $\lambda=-3,3$. For $\lambda=-3$, the eigenvector is $\binom{-4}{-8}$ and for $\lambda=3$, the eigenvector is given by $\binom{-4}{-2}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{-3 t} \vec{v}_{1}+c_{2} e^{3 t} \vec{v}_{2}=\binom{-4 c_{1} e^{-3 t}-4 c_{2} e^{3 t}}{-8 c_{1} e^{-3 t}-2 c_{2} e^{3 t}}=\binom{c_{1} e^{-3 t}+2 c_{2} e^{3 t}}{2 c_{1} e^{-3 t}+c_{2} e^{3 t}} .
$$

Now plugging in the initial conditions give $c_{1}+2 c_{2}=3$ and $2 c_{1}+c_{2}=3$ so $c_{1}=c_{2}=1$ and the solution is $\vec{y}=\binom{e^{-3 t}+2 e^{3 t}}{2 e^{-3 t}+e^{3 t}}$.
7. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=2 y_{1}(t)+y_{2}(t) \\
y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{array}\right.
$$

Solution: Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}^{\prime}=A \vec{y}$. The eigenvalues of A are given by $(2-\lambda)(2-\lambda)-1=\lambda^{2}-4 \lambda+3$ or $\lambda=1,3$. For $\lambda=1$,
the eigenvector is $\binom{1}{-1}$ and for $\lambda=3$, the eigenvector is given by $\binom{1}{1}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{t} \vec{v}_{1}+c_{2} e^{3 t} \vec{v}_{2}=\binom{c_{1} e^{t}+c_{2} e^{3 t}}{-c_{1} e^{t}+c_{2} e^{3 t}} .
$$

8. Verify that $\vec{x}(t)=\left(\begin{array}{c}0 \\ -e^{t} \\ e^{t}\end{array}\right), \vec{y}(t)=\left(\begin{array}{c}e^{2 t} \\ -2 e^{2 t} \\ 0\end{array}\right), \vec{z}(t)=\left(\begin{array}{c}0 \\ e^{3 t} \\ e^{3 t}\end{array}\right)$ are solutions to $\vec{v}^{\prime}=A \vec{v}$ where $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 2\end{array}\right)$.

Solution: Multiplying gives us $A \vec{x}=\vec{x}, A \vec{y}=2 \vec{y}$ and $A \vec{z}=3 \vec{z}$ which is what we wanted to show since $\vec{x}^{\prime}=\vec{x}, \vec{y}^{\prime}=2 \vec{y}, \vec{z}^{\prime}=3 \vec{z}$.
9. Under the same notation as the previous problem. Write out the system of linear equations that $\vec{v}^{\prime}=A \vec{v}$ represents and find the general solution.

Solution: It represents

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=2 y_{1}(t) \\
y_{2}^{\prime}(t)=2 y_{2}(t)+y_{3}(t) \\
y_{3}^{\prime}(t)=2 y_{1}(t)+y_{2}(t)+2 y_{3}(t)
\end{array}\right.
$$

The general solution is of the form $c_{1} \vec{x}+c_{2} \vec{y}+c_{3} \vec{z}=\left(\begin{array}{c}c_{2} e^{2 t} \\ -c_{1} e^{t}-2 c_{2} e^{2 t}+c_{3} e^{3 t} \\ c_{1} e^{t}+c_{3} e^{3 t}\end{array}\right)$.
10. Still with the same notation, what are the eigenvalues and eigenvectors of A ?

Solution: The eigenvalues are $1,2,3$ with eigenvectors $\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ respectively.

2 Miscellaneous

2.1 Problems

11. Let $V=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$. Let $A=V \cdot\left(\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right) \cdot V^{-1}$. Calculate A.

Solution: $A=\left(\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right)$.
12. With the same A as above, calculate the eigenvalues and eigenvectors of A. What do you notice? How does this relate to V ?

Solution: The eigenvalues of A are 3 and -1 . For $\lambda=3$, the eigenvector is $\binom{1}{-1}$ and for $\lambda=-1$, the eigenvector is $\binom{1}{1}$. These are exactly the elements that appear in the diagonal matrix in the center and the columns of V.
13. (Challenge) Create a matrix with eigenvalues $\lambda=1,2$ and eigenvectors $\binom{1}{1}$ and $\binom{0}{1}$ respectively.

Solution: Let $V=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Then let $A=V \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right) V^{-1}=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right)$. This has the desired eigenvalues and eigenvectors.

